Problem 1.7

The charge flowing in a wire is plotted in Fig. 1.24. Sketch the corresponding current.

Figure 1.24
For Prob. 1.7.

Solution

Current and charge are related by

$$
i(t)=\frac{d q}{d t}
$$

so the current is the slope of the charge-versus-time graph.
For $0<t<1 \mathrm{~s}: \quad i(t)=\frac{\text { rise }}{\text { run }}=\frac{(10-0) \mathrm{C}}{(1-0) \mathrm{s}}=10 \frac{\mathrm{C}}{\mathrm{s}}=10 \mathrm{~A}$
For $1<t<2 \mathrm{~s}: \quad i(t)=\frac{\text { rise }}{\text { run }}=\frac{(-10-10) \mathrm{C}}{(2-1) \mathrm{s}}=-20 \frac{\mathrm{C}}{\mathrm{s}}=-20 \mathrm{~A}$
For $2<t<3 \mathrm{~s}: \quad i(t)=\frac{\text { rise }}{\text { run }}=\frac{(-10-(-10)) \mathrm{C}}{(3-2) \mathrm{s}}=0$
For $3<t<4 \mathrm{~s}: \quad i(t)=\frac{\text { rise }}{\text { run }}=\frac{(0-(-10)) \mathrm{C}}{(4-3) \mathrm{s}}=10 \frac{\mathrm{C}}{\mathrm{s}}=10 \mathrm{~A}$

